ANO0O7 - Application examples of the HMI2 device

Sommario

ANOO7 - Application examples of the HMI2 device ...
Wait for a KeyPress or more keys for some time ...
Create @ FECUISIVE VIBW .ueiiiiiiiiiiiiiii e e e e e e e ettt ettt e e e e e e e e s s s e e bbbt e e e et et e e e e e e e e e e annnnnsbnaneenes
Create @ TOXE VIBW oot e e e e e e e e e e e e e e
Create multiple recursive views mixed with text displayscccccoviiiiiiiiiiiii e,
Create a simple data INPUL ..o
Create a complex data iNtrodUCEIONooiiiiii e
Create a mixed non-recursive VIiSUAlZationccoiiiiiiiiiiiii e
D= Yo g o 1y ol [o o1 | OSSPSR

1/9

ANO0O7 - Application examples of the HMI2 device

2/9

ANO0O7 - Application examples of the HMI2 device

ANOO7 - Application examples of the HMI2 device

In this chapter we will analyze some programming examples useful to be able to perform basic functionality with the help of the
HMI2 device. How will only use an D221 hardware platform, but the applicability of such examples, with any small changes, is
extended to all microQMove hardware. It's a good idea, before using this device, define a constant value series (in the CONST
section of the configuration unit of the Qcl application) to be inserted in the module configuration to improve readability and
maintenance of the application developed.

§ KA oo o oo oA A ARk oo oA KK K

;Definition of values associated with the keys
= 3k 3k ok ok 5k ok sk >k 3k 3k 3k 3 ok 3k ok 5K >k 3K 3k 3 3k 3K 3K 5K 5K >k ok >k 3k 3k 3 3k 3K 5K ok >k >k >k 3k K 3 3 K 3k 5K >k >k >k >k 5k 3k Kk ok >k

CONST

KEY ENTER 1 ; enter key
KEY_CLEAR 8 ; clear key
KEY_PLUS 4 ; + key
KEY_MINUS 32 i - key
KEY_F 16 i F key

» 3K ok 3k K ok 3k K 5K ok 3k K >k ok 3k 5K >k 3k 5K >k >k 3k 5K >k 3k 3k 5K >k 3k 5K >k >k 3k 5K >k 3k 5K >k >k 3k 5K >k K 3K 5K >k K 5K >k >k kK Kk ok ok
v

;Definition of values associated with the leds
KRR oA oS o ok A o K o oK o o ok A S o oK S A ok o o ok A ok ook ok ok

KK KoK oK oK o KKK oK oK o oK oK oK oK oK K K oK oK oK K K oK oK ok R K oK ok oK

*
isociated with the disp1a¥*characters

;Definition of values
3K 5k ok ok 3 o ok ok ok ok ok 3 ok ok ok ok ok 5k 3k o K oK ok ok Sk ok ok ok 5k ok ok 5 K ok ok K ok %k

LR ok o K K

LED L1 2 ; L1 led
LED"L2 4 ; L2 led
LED"L3 8 ; L3 led
LED"L4 16 ; L4 led
LED”F 512 ; F key led
LED"AL 1 ; ALARM led
§ R KKK KKK

a

*

CHAR 35 ; display code for the <space> character
CHAR™O 0 ; display code for the 0 character
CHAR™1 1 ; display code for the 1 character
CHAR™2 2 ; display code for the 2 character
CHAR™3 3 ; display code for the 3 character
CHAR 4 4 ; display code for the 4 character
CHAR™5 5) ; display code for the 5 character
CHAR™6 6 ; display code for the 6 character
CHAR™7 7 ; display code for the 7 character
CHAR™8 8 ; display code for the 8 character
CHAR™9 9 ; display code for the 9 character
CHAR™A 10 ; display code for the a character
CHAR™B 11 ; display code for the b character
CHAR™C 12 ; display code for the c character
CHAR™D 13 ; display code for the d character
CHARE 14 ; display code for the e character
CHAR”F 15 ; display code for the f character
CHAR™G 16 ; display code for the % character
CHAR"H 17 ; display code for the h character
CHAR™I 18 ; display code for the i character
CHAR”J 28 ; display code for the & character
CHAR“K 40 ; display code for the k character
CHAR™L 19 ; display code for the 1 character
CHAR™M 43 ; display code for the m character
CHAR™N 20 ; display code for the n character
CHAR™O 21 ; display code for the o character
CHAR™P 22 ; display code for the p character
CHAR™Q 23 ; display code for the q character
CHAR"R 24 ; display code for the r character
CHAR™S 5 ; display code for the s character
CHAR™T 25 ; display code for the t character
CHAR"U 26 ; display code for the u character
CHAR™V 34 ; display code for the v character
CHAR”W 28 ; display code for the w character
AR 27 ; display code for the y character
CHAR™UP 40 ; display code for the upper segment character
CHARTCENTER 33 ; display code for the central segment character
CHAR”LOWER 36 ; display code for the lower segment character
CHAR”UPCEN 39 ; display code for the upper & middle segments character
CHARTLOWCEN 37 ; display code for the lower & middle segments character
CHAR”LOWUP 42 ; display code for the lower & upper segments character
CHAR”LOWUPCE 38 ; display code for the lower & upper & middle segments character
CHAR”NONE 0 ; d salaK code for the NONE (none char showed) character
CHAR”POINT &HB8O ; bits that enable the decimal point

This methodology is important to apply it to all parameters formats from bit fields such as scflags or deflags; in this case we
define for example:

SCRA ENABLE 1
SCRB"ENABLE 2
SCRCTENABLE 4
SCRATDISSIGN 8
SCRB"DISSIGN 16
SCRC”DISSIGN 32
SCRATDISLZB 64
SCRB'DISLZB 128

; Bit screenA enabling viewing

; Bit screenB enabling viewing

; Bit screenC enabling viewing

; Bit screenA disable sign

; Bit screenB disable sign

; Bit screenC disable sign

; Bit Leading zero blank 3LZB§ screenA disable

@
pe
+

; Bit Leading zero blank (LZB) screenB disable
SCRC_DISLZB 256 ; Bit Leading zero blank (LZB) screenC disable
DE ENABLE 1 ; Bit dataentry enable
DE"DISSIGN 4 ; Bit sign disable in data entry
DE_ENALIM 16 ; Bit enabling control limits

Insert then the HMI2 device with sampling time of 5ms in the specific section:

INTDEVICE
dvHMI HMI2 5

In the following examples, the device will always be dvHMI.

Wait for a KeyPress or more keys for some time

3/9

ANO0O7 - Application examples of the HMI2 device

You want to write a Qcl program wait for the keystroke F for executing a subroutine. Simply verify that the key parameter
having the bit for the F key active:

MAIN:
IF (dvHMI:key ANDB KEY F)
CALL MyFUNC
ENDIF
WAIT 1
JUMP MAIN
SUB MyFUNC

This code does not ensure that it is only pressed the F button: the MyFUNC function may also be called if they were pressed
together with F key also other keys. To ensure the exclusivity of the pressure of F the code becomes:

IF (deMI:keN EQ KEY_F)
CALL MyFUNC
ENDIF

You want now write code that listens for the both pressure of the CLEAR and ENTER keys for at least 2 seconds:

IF (IdVHMI:key EQ (KEY ENTER+KEY CLEAR))

F tm@l:remain EQ © ;check expired timer
My FUNC
EENDIF
tm01=2000 ;timer is reloaded
ENDIF

Create a recursive view

You want to write a program that enables a Qcl recursive view on the leftmost 4 display with sign and 2 decimal places. We
decide for ease to use screenA. We must first set the number of characters you want to shown bearing in mind that the sign is
a character; we can therefore say that the number of characters is the number of digits of the display that are occupied and
manipulated by the view. The maximum and minimum values that will allow us to shown are 9999 and -999. If the data to be
showed is less than this minimum value or greater than this maximum value, the display shows the out of range characters

$$$$.

We'll set:

dvHMI:ncharA = 4

We will put our view on the leftmost display setting the offset value to:

dVHMI:offsA = dvHMI:numdis - 4

We set decimal point position to 2:

dvHMI:decptA = 2

Enable recursive view screenA by setting the corresponding enable of the scflags variable:

dvHMI:scflags = SCRA_ENABLE

Executing the above statement We automatically disabled the other two recursive views and we have enabled the display of
the sign on screenA. In case we wanted to preserve the States of other screenB and screenC views we should have written:

dvHMI:scflags = dvHMI:scflags ORB_SCRA ENABLE ;screenA enable
dvHMI:scflags = dvHMI:scflags ANDB SCRA_DISSIGN ;screenA sign enable

Finally, you can simply update the screenA variable with the value you want to shown and normally contained in another
variable of our program (in the example, suppose we use a variable with the count name):

dvHMI:screenA = count

The update operation of screenA must be continuously performed by our program with the refresh rate more appropriate for
reasons of functionality that the programmer has planned for that variable.

Create a text view

You want to write a Qcl program that writes on display “HELLO" right-aligned. To do this, just set the variables associated with
the digit of the display the code of the character that you want to shown. We will therefore have:

;Print "HELLO"

dvHMI:dis6 = CHAR
dvHMI:dis5 = CHAR™
dvHMI:dis4 = CHAR
dvHMI:dis3 = CHAR'E
dvHMI:dis2 = CHARTL

4/9

ANO0O7 - Application examples of the HMI2 device

dvHMI:disl
dvHMI:dis0

CHAR L
CHAR™0

Note:
In order to work properly, must not be active recursive views that overwrite all or part of interested digit by our
“HELLO”. Check that in thescflags parameter the 0,1 and 2 bits are to 0 or force them to that value.

Create multiple recursive views mixed with text displays

You want to create a view consists of two fixed texts and two recursive values. As an example, you shown a time in seconds
and a program number. The desired show might be: “t51 Pr2” where “t” indicates the time, “51" is the time value, “Pr” it's a
text that indicates the program, “2” indicates the program number.

First we print the texts:

dvHMI:dis6 = CHAR T
dvHMI:dis3 = CHAR™
dvHMI:dis2 = CHAR”P
dvHMI:disl = CHAR_R

Then we set the data for the numerical display of the time through the screenA.

dvHMI:ncharA = 2
dvHMI:offsA = 4
dvHMI:decptA = 1
dvHMI:scflags = dvHMI:scflags ORB SCRA DISSIGN

We then the data for the numerical display of the program using the screenB.

dvHMI:ncharB = 1
dvHMI:offsB = 0
deMI:decgtB =0
dvHMI:scflags = dvHMI:scflags ORB SCRB DISSIGN

We enable the two views:

dvHMI:scflags = dvHMI:scflags ORB SCRA ENABLE ORB SCRB_ENABLE

Then recursively we will update the view data:

dvHMI:screenA

glTime
dvHMI:screenB

glProgram

Create a simple data input

You want to write a Qcl program that allows the user to input a value to a variable , for example, one used to store a pieces
counting. First we will declare that variable, for example cntPieces in the section of the configuration unit. Suppose you want to
view the “CP” message on the left side of the display to indicate the introduction of pieces counting, and that the value to be
introduced is 4 charactersand positioned on the far right of the display. The data entry will occupy the dis0, dis1, dis2, dis3
display while the message is written in dis5 and dis6.

dvHMI:dis6 = CHAR C
dvHMI:dis5 = CHAR_P
dvHMI:deoffs = 0 —

The position of the decimal point will be placed to 0 and we will copy the value of the current pieces in the devalue parameter
count to ensure that data appears at the entrance of the introduction that value on the display.

dvHMI:dedecpt
dvHMI:devalue

o .
cntPieces

Finally we will enable the data input using the appropriate flag, we will disable the sign (a pieces counter cannot be negative)
and activate the introduction with the DATAENTRY command:

dvHMI:deflags = DE_ENABLE ORB DE_DISSIGN
DATAENTRY dvHMI — — -

At this point the most significant digit on the display will start flashing the value of cntPieces and you will have to wait for the
user to enter the data and confirm with the ENTER button. Then you must read the introduced data (in the devalue parameter)
and copy it into our variable cntPieces of pieces counting. The st_dentry state lets us know if data entry is active o expect this
go to 0 before copying:

WHILE (dvHMI:st dentry)
AIT 1 -

W,
ENDWHILE
cntPieces = dvHMI:devalue

At this point thecntPieces variable is updated with the value entered by the user.

5/9

ANO0O7 - Application examples of the HMI2 device

Create a complex data introduction

You want to write a Qcl program that allows the user to input a value to a variable, as in the previous example, but with the
following additional features:

e check that the figure is between 1 to 1000 and otherwise show “Error” for 1 second and repeat the data
entry

¢ if the F key is pressed you step out of the data input without storing the data introduced and may be
printed for a second the “Exit F” message

¢ If the CLEAR key is pressed you step out of the data input without storing the data introduced and may be
printed for a second the “Exit C" message

¢ print for a second the “MOdiFY” message if the introduced data has been modified

Control data limits

To enable bounds checking of the introduced data you must enable this feature putting to 1 the relevant bits of the deflags
parameter and set in deuplim and delowlim parameters the values of the upper and lower limits. Compared to the previous
example code we will add, before the DATAENTRY command, the following Qcl instructions:

deMI deuplim = 1000
dvHMI:delowlim =

and replace the setting instruction of the deflags parameter:

dvHMI:deflags = DE_ENABLE ORB DE_DISSIGN ORB DE_ENALIM

Configure one or more keys to exit from data entry

To enable the output from data entry with a key You must set the deExKeymask parameter that is the form to exit buttons. To
enable a button to function as data entry exit key, simply activate the corresponding bit of the above mentioned parameter. So
if we want to ensure that you exit from data entry with the F and CLEAR keys you must insert the following DATAENTRY
command instruction Qcl:

dvHMI:deExKeymask = KEY CLEAR ORB KEY F

Check if the introduced data is within limits

When you exit from the data entry (then with the st_dentry = 0 State), check the value of the st_uplim and st_lowlim states to
know if the data introduced is in excess of the limits set. If st_ uplim vale 1 means that the input value is greater than the upper
limit, while if st_lowlim vale 1 means that the input value is less than the lower limit. Then we will check those states, and we
will make a call to the ERROR subroutine (that will display the error message for 1 second) if the limits are exceeded.

;Data limlts control
iF (dvHMI:st upllm OR dvHMI:st lowlim)

CALL ERROR ,prlnt error message
ENDI.'J:UMP Dentry ;return datai introduction

Check the output key from data entry

Checking thedeExitKey parameter and the st modified and st_exitcmd states, you can understand in what way you are signed
out from data entry. The following table summarizes the possible conditions:

deExitKey | st exitcmd | Description

0 0 Exit with confirmation by pressing the ENTER key or by EXITDEC command

0 1 Exit without confirmation by EXITDE command

1=0 X Exit without confirmation by pressing the button identified by the value of the deExitKey parameter

Check if the data has been modified

To check if the introduced data has changed, simply check the st modified status. It takes the 1 value If the input value is
different from the previous value of the devalue parameter befor of the DATAENTRY command.
The full program will then:

LABELO:
dVHMI:dis6 = CHAR C

6/9

ANO0O7 - Application examples of the HMI2 device

dvHMI:dis5 = CHAR P
dvHMI:dis4 = CHAR”
dvHMI:deoffs = 0 —

dvHMI:denchar = 4
dvHMI:dedecpt = 0 .
dvHMI:devalue = cntPieces
dvHMI:deuplim = 1000

dvHMI:delowlim = 1

deMI:deExKeymask KEY CLEAR ORB K

dvHMI:deflags = DE _ENABLE ORB DE | DISSIGN ORB DE_ENALIM
DATAENTRY dvHMI

WHILE (dvHMI:st dentry)
WAIT 1
ENDWHILE

IF deMI deExitKey
——Output fro? datg entry with output keys

dVHMI:dis6 =

dvHMI:dis5 = CHAR™

dvHMI:dis4 = CHAR"I

dvHMI:dis3 = CHAR'T

dvHMI: d152 = CHAR*

dvHMI:disl =

IF dvHMI: deEx1tKe¥ EQ KEY F

SEdeMI dis0 HAR ;F key press
IF deMI deEx1tKe¥ EQ KEY CLEAR
dvHMI:disO = CHAR ;CLEAR key press

ENDIF

ENDIF

;--Output from data entry with confirm
--Limits_control
iF dvHMI:st uplim OR dvHMI:st lowlim)
CALL ERROR prlnt error message
EN JUMP LABELO ;return to data entry

--Checks if the data has changed
iF deMI st modlféﬁd

dvHMI:dis6 = CHAR ;print "MODIFY" message
dvHMI:dis5 = CHAR™M
deMI:d;s4 = CHAR™O
dvHMI:dis3 = CHAR'D
dvHMI:dis2 = CHAR I
dvHMI:disl = CHAR"F
dvHMI:dis@ = CHAR_Y
tm@l = 1000 -
WAIT tmO1l
ENDIF
cntPieces = dvHMI:devalue ;stores entered value
ENDIF
MAIN:
WAIT 1
JUMP MAIN
SUB ERROR)
dvHMI:dis6 = CHAR ;print "ERROR" message
dvHMI:dis5 = CHARE
dvHMI:dis4 = CHAR™R
dvHMI:dis3 = CHAR"R
dvHMI:dis2 = CHAR™
dvHMI:disl = CHAR"R
dvHMI:dis@ = CHAR™”
tmol = 1000 -
WAIT tmoOl
ENDSUB

END

Create a mixed non-recursive visualization

You want to create a view of a message consisting of the “Error” string and an identification number of the error that appears
when occurs an error, while normally appears, recursively the counter value. To achieve this, we exploit the functioning can
only be displayed by a numerical value present in DATAENTRY command functionality and enabled by setting to 0 the
DE_ENABLE bits of the deflags parameter. For simplicity, we'll create a fictitious error condition by the end of a timer uploaded
to 5 sec. As will see, It will be important to remember to disable recursive view before showing the error message, otherwise
the result will not be what you expect.

The code is:

MAIN:

deMI d156 CHAR _C

;Configure and enable screenA

dvHMI:ncharA = 6

dvHMI:offsA = 0

dvHMI:decptA = 0

dvHMI:scflags = dvHMI:scflags ORB SCRA ENABLE

tm0l = 5000 ;how to use the timer to cause an error
LOOP:

dvHMI:screenA = (dvHMI:screenA + 1) % 999999

tE"thot’

;disable screenA
dvHMI : scflags = dvHMI:scflags ANDB (NOT SCRA ENABLE)
CALL ERROR -
errNum = errNum + 1
JUMP MAIN
ENDIF

WAIT 1
JUMP LOOP
SUB ERROR
,prlnt "ERROR"

dvHMI:dis6
dvHMI:dis5

HAR E
HAR_R

7/9

ANO0O7 - Application examples of the HMI2 device

dvHMI:dis4 = CHAR R
dvHMI:dis3 = CHAR™O
dvHMI:dis2 = CHAR"R
;printing error with the ID
dvHMI:deoffs = 0
dvHMI:denchar = 2
dvHMI:dedecpt = 0
dvHMI:devalue = errNum
dvHMI:deflags = DE_DISSIGN

DATAENTRY dvHMI ~ —
;wait 2 seconds

tm@l = 2000
WAIT tmO1l
ENDSUB
END

Diagnostic Inputs

You want to create a view that represents the State of 9 digital inputs. The same example can be used for the representation of
digital outputs. We will assign to each input, one of the segments of each of the three rightmost digit and we will activate when
the corresponding input will be active.

The figure shows the assignment chose for the inputs and segments of the digits of the display:

n |4 17
12 15 18
I3 |G 19

@Erﬂm. _ ,/// ?/f’

u t:: ¥ F _j':' j'::; =

vy g i

First we will declare, in the configuration unit, 9 variables of FLAG dimensions whose value will simulate the condition of 9
digital inputs.

GLOBAL

gfInp02
gfInp03
gfInp04

Q
=5
H
=
3=
[<}
wv
mmTmTm T T T T T

We will declare a global array to 8 items that will serve to hold character codes to print for each combination of inputs.

ARRGBL . .
diagnTab B 8 ;character table for Diagnostics

In fact, for each group of three inputs associated with one of the three digits on the display we will have 8 possible
combinations. For example, the table summarizes the possible States of the digit associated with, the combination of inputs
17,18 ed 19:

17 | 18 | 19 | Display
0|00

0|0 |1

0|1 |0 |-

0|1 (1 =
1010

1 /(0|1 |~

1|1 (0 |*
111 %

Will finally also defining some constants to be used as a mask for generic bits of a byte:

CONST

;-- Generic bit field mask ---------

8/9

ANO0O7 - Application examples of the HMI2 device

B 00 &HO1 ; value for bit 00
B 01 &HO2 ; value for bit 01
B~02 &HO4 ; value for bit 02
B~03 &HO8 ; value for bit 03
B 04 &H10 ; value for bit 04
B~05 &H20 ; value for bit 05
B~06 &H40 ; value for bit 06
B~ 07 &H80O ; value for bit 07

The complete code to obtain the diagnostic function is:

;Initializes table
diagnTab[1l] = CHAR
diagnTab[2] = CHAR"UP
diagnTab[3] = CHAR“CENTER
diagnTab[4] = CHARTUPCEN
diagnTab[5] = CHAR“LOWER
diagnTab[6] = CHAR“LOWUP
diagnTab[7] = CHAR“LOWCEN
diagnTab[8] = CHARTLOWUPCE
;print "INP." message
ﬁr?11:dis6 = CHAR I 9
hmi:dis5 = CHAR™N
hmi:dis4 = CHAR”P ORB CHAR_POINT
MAIN:
hmi:dis2 = diagnTab[(gfInpOl * B_00 + gfInp02 * B 01 + gfInp03 * B 02) + 1
hmi:disl = diagnTab[(gfInp04 * B~00 + gfInp05 * B"01 + gfInp06 * B 02) + 1
hmi:dis® = diagnTab[(gfInp®@7 * B~ 00 + gfInpO8 * B 01 + gfInp@9 * B 02) + 1

WAIT 1
JUMP MAIN
END

Documento generato automaticamente da Qem Wiki - https://wiki.gem.it/
Il contenuto wiki & costantemente aggiornato dal team di sviluppo, € quindi possibile che la versione online contenga
informazioni pil recenti di questo documento.

9/9

https://wiki.qem.it/

	Sommario
	AN007 - Application examples of the HMI2 device
	Wait for a KeyPress or more keys for some time
	Create a recursive view
	Create a text view
	Create multiple recursive views mixed with text displays
	Create a simple data input
	Create a complex data introduction
	Control data limits
	Configure one or more keys to exit from data entry
	Check if the introduced data is within limits
	Check the output key from data entry
	Check if the data has been modified

	Create a mixed non-recursive visualization
	Diagnostic Inputs

