ANO0O7 - Application examples of the HMI2 device

Inhaltsverzeichnis

ANOO7 - Application examples of the HMI2 device ...
Wait for a KeyPress or more keys for some time ...
Create @ FECUISIVE VIBW .ueiiiiiiiiiiiiiii e e e e e e e ettt ettt e e e e e e e e s s s e e bbbt e e e et et e e e e e e e e e e annnnnsbnaneenes
Create @ TOXE VIBW oot e e e e e e e e e e e e e e
Create multiple recursive views mixed with text displayscccccoviiiiiiiiiiiii e,
Create a simple data INPUL ..o
Create a complex data iNtrodUCEIONooiiiiii e
Create a mixed non-recursive VIiSUAlZationccoiiiiiiiiiiiii e
D= Yo g o 1y ol [o o1 | OSSPSR

1/9

ANO0O7 - Application examples of the HMI2 device

2/9

ANO0O7 - Application examples of the HMI2 device

ANOO7 - Application examples of the HMI2 device

In this chapter we will analyze some programming examples useful to be able to perform basic functionality with the help of the
HMI2 device. How will only use an D221 hardware platform, but the applicability of such examples, with any small changes, is
extended to all microQMove hardware. It's a good idea, before using this device, define a constant value series (in the CONST
section of the configuration unit of the Qcl application) to be inserted in the module configuration to improve readability and

maintenance of the application developed.

o stk ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok ok sk sk ok ok sk ok ok ok sk ok ok ok sk ok ok
’

;Definition of values associated with the keys
w3k ok sk ok ok sk ok ok sk ok ok sk ok sk sk ok sk ok sk sk ok ok 3k ok 3k ok ok sk ok sk sk ok ok sk ok 5k >k ok sk ok sk sk %k Sk >k ok ok >k ok sk ok sk sk ok ko

CONST

KEY ENTER 1
KEYCLEAR &
KEY_PLUS 4
KEY_MINUS 32
KEY—F 16

’
’
’
’

enter key
clear key

; + key

- key

; F key

« sk ok ok ok o ok ok ok ok ok ok sk ok ok ok sk K o ok ok sk o ok sk ok ok ok sk ok ok ok sk K ok ok ok ok ok ok ok ok ok ok ok ok

KKK K oK o K K KoK oK ok o oK K oK oK o o K oK oK oK oK o o K oK ok oK o K ok oK oK R o K K oK oK ok o K KoK oK oK ok K

fgifinition of values associated with the leds

LED L1
LED L2
LEDL3
LED"L4
LEDF
LED~AL

U= AN

CHAR 35
CHAR O O
CHAR1 1
CHAR 2 2
CHAR3 3
CHAR 2 4
CHAR5 5
CHAR 6 6
CHAR 7 7
CHAR '8 8
CHAR 9 O
CHAR A 10
CHARB 11
CHARC 12
CHARD 13
CHARE 14
CHARF 15
CHAR G 16
CHARH 1/
CHARI 18
CHARJ 28
CHARK 40
CHARL 19
CHAR M 43
CHAR'N 20
CHARO 21
CHARP 22
CHARTQ 23
CHAR R 24
CHAR'S 5
CHART 25
CHARU 26
CHARV 34
CHAR W 28
CHARTY 27
CHAR"UP _ 40
CHAR CENTER
CHARLOWER
CHARUPCEN
CHARLOWCEN
CHARLOWUP
CHAR_LOWUPCE
CHARNONE
CHARPOINT

This methodology is important to apply it to all parameters formats from bit fields such as scflags or deflags; in this case we
define for example:

SCRA_ENABLE
SCRB”ENABLE

SCRC_DISLZB

DE ENABLE
DE"DISSIGN
DE_ENALIM

1
2
4
8
1

32
64
128
256

1
4
16

’
’
’
’
’

’

; F key led

ALARM led

= 3k >k 3k ok ok ok ok ok >k 3k ok ok sk Sk ok >k ok ok ok >k 3k ok >k sk Sk ok >k Sk ok >k sk 3k ok >k sk ok ok sk Sk ok >k Sk ok ok sk sk ok >k ok sk ok >k ok ok ok ok ok ok >k ckok

’
;Definition of values associated with the display characters
RIS K ok ook K ok ok o ok ok ok ok ok o ok ok o ok ok ok o o ok o ok ko ok ok ok o ok o ok o ok ok ok o ok ook ko ok

display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
displa

bits that enab

code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code

Bit screenA
Bit screenB
Bit screenC
Bit screenA
Bit screenB
Bit screenC
Bit Leading
Bit Leading
Bit Leading

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

le

<space> character
0 character
1 character
2 character
3 character
4 character
5 character
6 character
7 character
8 character
9 character
a character
b character
c character
d character
e character
f character
g character
character
1 character
i character
character
L character
m character
n character
o character
p character
q character
r character
s character
t character
u character
v character
w character
y character
upper segment character
central segment character
lower segment character
upper & middle segments character
lower & middle segments character
lower & upper segments character
lower & upper & middle segments character
NONE (none char showed) character
decimal point

enabling viewing

enabling viewing

enabling viewing

disable sign

disable sign

disable sign

zero blank™ (LZB) screenA disable
zero blank (LZB) screenB disable
zero blank (LZB) screenC disable

; Bit dataentry enable

; Bit sign_disable in_data entry

Bit enabling control limits

Insert then the HMI2 device with sampling time of 5ms in the specific section:

INTDEVICE
dvHMI

HMI2

In the following examples, the device will always be dvHMI.

Wait for a KeyPress or more keys for some time

3/9

ANO0O7 - Application examples of the HMI2 device

You want to write a Qcl program wait for the keystroke F for executing a subroutine. Simply verify that the key parameter
having the bit for the F key active:

MAI
dVHMI:key ANDB KEY F
CALL MyFUNC

WAIT
MAIN

MyFUNC

This code does not ensure that it is only pressed the F button: the MyFUNC function may also be called if they were pressed
together with F key also other keys. To ensure the exclusivity of the pressure of F the code becomes:

dvHMI:key EQ KEY F
CALL MyFUNC

You want now write code that listens for the both pressure of the CLEAR and ENTER keys for at least 2 seconds:

dvHMI:key EQ (KEY ENTER+KEY CLEAR)
tm@l: remain EQ ;check expired timer
CALL MyFUNC

tmol ;timer is reloaded

Create a recursive view

You want to write a program that enables a Qcl recursive view on the leftmost 4 display with sign and 2 decimal places. We
decide for ease to use screenA. We must first set the number of characters you want to shown bearing in mind that the sign is
a character; we can therefore say that the number of characters is the number of digits of the display that are occupied and
manipulated by the view. The maximum and minimum values that will allow us to shown are 9999 and -999. If the data to be
showed is less than this minimum value or greater than this maximum value, the display shows the out of range characters

$$%9%.
We'll set:

dvHMI:ncharA

We will put our view on the leftmost display setting the offset value to:

dvHMI:offsA = dvHMI:numdis
We set decimal point position to 2:

dvHMI:decptA

Enable recursive view screenA by setting the corresponding enable of the scflags variable:

dvHMI:scflags = SCRA_ENABLE

Executing the above statement We automatically disabled the other two recursive views and we have enabled the display of
the sign on screenA. In case we wanted to preserve the States of other screenB and screenC views we should have written:

dvHMI:scflags = dvHMI:scflags ORB_SCRA ENABLE ;screenA enable
dvHMI:scflags = dvHMI:scflags ANDB SCRA_DISSIGN ;screenA sign enable

Finally, you can simply update the screenA variable with the value you want to shown and normally contained in another
variable of our program (in the example, suppose we use a variable with the count name):

dvHMI:screenA count

The update operation of screenA must be continuously performed by our program with the refresh rate more appropriate for
reasons of functionality that the programmer has planned for that variable.

Create a text view

You want to write a Qcl program that writes on display ,HELLO" right-aligned. To do this, just set the variables associated with
the digit of the display the code of the character that you want to shown. We will therefore have:

;Print "HELLO"
dvHMI:dis6 = CHAR
dvHMI:dis5 = CHAR™
dvHMI:dis4 = CHAR™H
dvHMI:dis3 = CHARTE
dvHMI:dis2 = CHARTL

4/9

ANO0O7 - Application examples of the HMI2 device

dvHMI:disl = CHAR L
dvHMI:dis®@ = CHARZO

»HELLO*“. Check that in thescflags parameter the 0,1 and 2 bits are to 0 or force them to that value.

Note:
@ In order to work properly, must not be active recursive views that overwrite all or part of interested digit by our

Create multiple recursive views mixed with text displays

You want to create a view consists of two fixed texts and two recursive values. As an example, you shown a time in seconds
and a program number. The desired show might be: ,t51 Pr2“ where ,t“ indicates the time, ,,51" is the time value, ,Pr” it's a
text that indicates the program, ,2“ indicates the program number.

First we print the texts:

dvHMI:dis6 = CHAR T
dvHMI:dis3 = CHAR”
dvHMI:dis2 = CHAR”P
dvHMI:disl = CHARR

Then we set the data for the numerical display of the time through the screenA.

dvHMI:ncharA
dvHMI:offsA
dvHMI:decptA
dvHMI:scflags = dvHMI:scflags ORB SCRA DISSIGN

We then the data for the numerical display of the program using the screenB.

dvHMI:ncharB

dvHMI:offsB

deMI:decgtB
ags

dvHMI:scf dvHMI:scflags ORB SCRB_DISSIGN

We enable the two views:
dvHMI:scflags = dvHMI:scflags ORB SCRA_ENABLE ORB SCRB_ENABLE

Then recursively we will update the view data:

dvHMI:screenA = glTime
dvHMI:screenB = glProgram

Create a simple data input

You want to write a Qcl program that allows the user to input a value to a variable , for example, one used to store a pieces
counting. First we will declare that variable, for example cntPieces in the section of the configuration unit. Suppose you want to
view the ,CP“ message on the left side of the display to indicate the introduction of pieces counting, and that the value to be
introduced is 4 charactersand positioned on the far right of the display. The data entry will occupy the dis0, dis1, dis2, dis3
display while the message is written in dis5 and dis6.

dvHMI:dis6 = CHAR C
dvHMI:dis5 = CHARP
dvHMI:deoffs -
dvHMI:denchar

The position of the decimal point will be placed to 0 and we will copy the value of the current pieces in the devalue parameter
count to ensure that data appears at the entrance of the introduction that value on the display.

dvHMI :dedecpt)
dvHMI:devalue cntPieces

Finally we will enable the data input using the appropriate flag, we will disable the sign (a pieces counter cannot be negative)
and activate the introduction with the DATAENTRY command:

dvHMI:deflags = DE_ENABLE ORB DE_DISSIGN
DATAENTRY dvHMI — — -

At this point the most significant digit on the display will start flashing the value of cntPieces and you will have to wait for the
user to enter the data and confirm with the ENTER button. Then you must read the introduced data (in the devalue parameter)
and copy it into our variable cntPieces of pieces counting. The st_dentry state lets us know if data entry is active o expect this
go to 0 before copying:

dvHMI:st dentry
WAIT -

cntPieces dvHMI:devalue

At this point thecntPieces variable is updated with the value entered by the user.

5/9

ANO0O7 - Application examples of the HMI2 device

Create a complex data introduction

You want to write a Qcl program that allows the user to input a value to a variable, as in the previous example, but with the
following additional features:

e check that the figure is between 1 to 1000 and otherwise show ,Error” for 1 second and repeat the data
entry

¢ if the F key is pressed you step out of the data input without storing the data introduced and may be
printed for a second the ,Exit F* message

¢ If the CLEAR key is pressed you step out of the data input without storing the data introduced and may be
printed for a second the ,Exit C* message

¢ print for a second the ,MOdiFY" message if the introduced data has been modified

Control data limits

To enable bounds checking of the introduced data you must enable this feature putting to 1 the relevant bits of the deflags
parameter and set in deuplim and delowlim parameters the values of the upper and lower limits. Compared to the previous
example code we will add, before the DATAENTRY command, the following Qcl instructions:

deMI deuplim
dvHMI:delowlim

and replace the setting instruction of the deflags parameter:

dvHMI:deflags = DE_ENABLE ORB DE_DISSIGN ORB DE_ENALIM

Configure one or more keys to exit from data entry

To enable the output from data entry with a key You must set the deExKeymask parameter that is the form to exit buttons. To
enable a button to function as data entry exit key, simply activate the corresponding bit of the above mentioned parameter. So
if we want to ensure that you exit from data entry with the F and CLEAR keys you must insert the following DATAENTRY
command instruction Qcl:

dvHMI:deExKeymask = KEY CLEAR ORB KEY F

Check if the introduced data is within limits

When you exit from the data entry (then with the st_dentry = 0 State), check the value of the st_uplim and st_lowlim states to
know if the data introduced is in excess of the limits set. If st_ uplim vale 1 means that the input value is greater than the upper
limit, while if st_lowlim vale 1 means that the input value is less than the lower limit. Then we will check those states, and we
will make a call to the ERROR subroutine (that will display the error message for 1 second) if the limits are exceeded.

;Data llmlts contri
dvHMI:st upllm OR dvHMI:st lowlim
CALL ERROR prlnt error message
Dentry ;return datai introduction

Check the output key from data entry

Checking thedeExitKey parameter and the st modified and st_exitcmd states, you can understand in what way you are signed
out from data entry. The following table summarizes the possible conditions:

deExitKey | st exitcmd | Description

0 0 Exit with confirmation by pressing the ENTER key or by EXITDEC command

0 1 Exit without confirmation by EXITDE command

1=0 X Exit without confirmation by pressing the button identified by the value of the deExitKey parameter

Check if the data has been modified

To check if the introduced data has changed, simply check the st modified status. It takes the 1 value If the input value is
different from the previous value of the devalue parameter befor of the DATAENTRY command.
The full program will then:

LABELO:
dvHMI:dis6 = CHAR C

6/9

ANO0O7 - Application examples of the HMI2 device

dvHMI:dis5 = CHAR P

dvHMI:dis4 = CHAR™

dvHMI:deoffs -

dvHMI:denchar

dvHMI:dedecpt .

dvHMI:devalue cntPieces

dvHMI:deuplim

dvHMI:delowlim

dvHMI:deExKeymask = KEY CLEA ORB

dvHMI:deflags - DE ENABLE ORB DE | DISSIGN ORB DE_ENALIM
DATAENTRY dvHMI

dvHMI:st dentry
AIT -

deMI deExitKey
-Qutput from data entry with output keys
dVHMI:dis6 - CHAR E
dvHMI:dis5 = CHART]
dvHMI:dis4 CHAR_I
dvHMI:dis3 = CHAR™T
dvHMI:dis2 CHAR*

dvHMI:disl
dvHMI : deEx1tKe¥ EQ KEY F
dvHMI:dis0 HAR ;F key press
deMI:deExitKe¥ EQ KEY CLEAR
dvHMI:dis0 ;CLEAR key press

;--Output from data entry with confirm
;--Limits control
dvHMI:st uplim OR dvHMI:st lowlim
CALL ERROR prlnt error message
LABELO ;return to data entry

,--Checks if the data has changed

dvHMI:st modlfled

dvHMI:dis6 CHAR ;print "MODIFY" message
dvHMI:dis5 CHAR M

deMI:d;s4 CHAR™O

dvHMI:dis3 = CHAR D

dvHMI:dis2 = CHAR'I

dvHMI:disl = CHAR™F

dvHMI:dis® = CHARTY

tmOl
WAIT tmOl

cntPieces dvHMI:devalue ;stores entered value
MAIN:
WAIT
MAIN
ERROR
dvHMI:dis6 - CHAR ;print "ERROR" message

dvHMI:dis® = CHAR™”
tmOl -
WAIT tmOl

END

Create a mixed non-recursive visualization

You want to create a view of a message consisting of the ,,Error” string and an identification number of the error that appears
when occurs an error, while normally appears, recursively the counter value. To achieve this, we exploit the functioning can
only be displayed by a numerical value present in DATAENTRY command functionality and enabled by setting to 0 the
DE_ENABLE bits of the deflags parameter. For simplicity, we'll create a fictitious error condition by the end of a timer uploaded
to 5 sec. As will see, It will be important to remember to disable recursive view before showing the error message, otherwise
the result will not be what you expect.

The code is:

MAIN:

;Stampa "C"
dvHMI:dis6 CHAR_C

;Configure and enable screenA

dvHMI:ncharA

dvHMI:offsA

dvHMI:decptA

dvHMI:scflags = dvHMI:scflags ORB SCRA ENABLE

tmol ;how to use the timer to cause an error
LOOP:
dvHMI:screenA dvHMI:screenA
,Errore?
tmo1

;disable screenA
dVvHMI : scflags = dvHMI:scflags ANDB (NOT SCRA ENABLE
CALL ERROR -
errNum = errNum

MAIN

WAIT
LOOP

ERROR

,prlﬂt e

dvHM d156 CHAR E
dvHMI:dis5 CHAR“R

7/9

ANO0O7 - Application examples of the HMI2 device

dvHMI:dis4 = CHAR R
dvHMI:dis3 = CHAR”O
dvHMI:dis2 = CHAR'R

;printing error with the ID
dvHMI:deoffs

dvHMI:denchar = 2
dvHMI:dedecpt 0
dvHMI:devalue = er
dvHMI:deflags - DE |
DATAENTRY dvHMI

,wait 2 seconds
tmol = 2000
WAIT tmO1l

rNum
DISSIGN

END

Diagnostic Inputs

You want to create a view that represents the State of 9 digital inputs. The same example can be used for the representation of
digital outputs. We will assign to each input, one of the segments of each of the three rightmost digit and we will activate when
the corresponding input will be active.

The figure shows the assignment chose for the inputs and segments of the digits of the display:

n |4 17
12 15 18
I3 |G 19

@Emm. _- ,/// ?/f’

u tf ¥ F _j':' j'::; =

vy g i

First we will declare, in the configuration unit, 9 variables of FLAG dimensions whose value will simulate the condition of 9
digital inputs.

GLOBAL

gfInp0l F
gfInp02 F
gfInp03 F
gfInp04 F
gfInp05 F
gfInp06 F
gfInp07 F
gfInp08 F
gfInp09 F

We will declare a global array to 8 items that will serve to hold character codes to print for each combination of inputs.

ARRGBL))
diagnTab B 8 ;character table for Diagnostics

In fact, for each group of three inputs associated with one of the three digits on the display we will have 8 possible
combinations. For example, the table summarizes the possible States of the digit associated with, the combination of inputs
17,18 ed 19:

17 | 18 | 19 | Display
0|00

0|0 |1

0|1 |0 |-

0|1 (1 =
1010

1 /(0|1 |~

1|1 (0 |*
111 %

Will finally also defining some constants to be used as a mask for generic bits of a byte:

CONST
- Generic bit field mask ---------

8/9

ANO0O7 - Application examples of the HMI2 device

B 00 HO1 ; value for bit 00
B~01 HO2 ; value for bit 01
B~02 HO4 ; value for bit 02
B 03 HO8 ; value for bit 03
B~ 04 H10 ; value for bit 04
B~05 H20 ; value for bit 05
B~ 06 H40 ; value for bit 06
B 07 H80 ; value for bit 07

The complete code to obtain the diagnostic function is:

;Initializes table

diagnTab R
diagnTab CHAR”UP
diagnTab CHAR”CENTER
diagnTab CHARTUPCEN
diagnTab CHAR”LOWER
diagnTab CHAR”LOWUP
diagnTab CHAR”LOWCEN
diagnTab CHAR”LOWUPCE
sprint "INP." message
hﬁi:dise CHAR T ?
hmi:dis5 = CHARTN
hmi:dis4 = CHAR”P ORB CHAR_POINT
MAIN:
hmi:dis2 diagnTab/| (gfInp0O1 B 00 gfInp02 B 01 gfInp03 B 02
hmi:disl diagnTab| (gfInp04 B_00 gfInp05 B 01 gfInp06 B~ 02
hmi:dis®@ = diagnTab! (gfInp07 * B~00 + gfInp@8 * B_01 + gfInp09 * B_02
WAIT
MAIN
END

Documento generato automaticamente da Qem Wiki - https://wiki.gem.it/
Il contenuto wiki & costantemente aggiornato dal team di sviluppo, € quindi possibile che la versione online contenga
informazioni pil recenti di questo documento.

9/9

https://wiki.qem.it/

	Inhaltsverzeichnis
	AN007 - Application examples of the HMI2 device
	Wait for a KeyPress or more keys for some time
	Create a recursive view
	Create a text view
	Create multiple recursive views mixed with text displays
	Create a simple data input
	Create a complex data introduction
	Control data limits
	Configure one or more keys to exit from data entry
	Check if the introduced data is within limits
	Check the output key from data entry
	Check if the data has been modified

	Create a mixed non-recursive visualization
	Diagnostic Inputs

