
DEVICE MODBUS

1/16

Sommario
DEVICE MODBUS 3 ...
1. Introduction 3 ..

1.1 Conventions 3 ...
1.2 Device declaration in the configuration unit 3 ...
1.3 Tables "data exchange" for MODBUS 3 ..

1.3.1 Data read from the device 3 ...
1.3.2 Writable data from QCL and sharable in MODBUS 4 ...

1.4 Master operation description 5 ...
1.4.1 Input and coil Data Access 5 ...
1.4.2 Mode of MASTER operation 5 ..
1.4.3 Read request 6 ..
1.4.4 Write request 6 ...
1.4.5 Examples 7 ...
1.4.6 Block diagrams 8 ..
1.4.7 Broadcast 8 ...
1.4.8 Slaves indentification 8 ...
1.4.9 Protocol extension 8 ..
1.4.10 Commands and parameters 9 ...

1.5 Slave operation description 12 ...
1.5.1 Slave mode operation 12 ..
1.5.2 Block diagram 13 ..
1.5.3 Commands and parameters 13 ...

1.6 Migration from MODBUS01 device to MODBUS device 15 ..
Example: 15 ...

DEVICE MODBUS

2/16

DEVICE MODBUS

3/16

DEVICE MODBUS

1. Introduction

The MODBUS® protocol represents an industrial communication system distributed and developed by Gould-Modicon to
integrate PLC’s, computers, terminals, inverter and other devices. MODBUS is a Master/Slave communication protocol where
only one device can be Master and monitors all activities of the serial line or TCPIP. As for the serial line can be connected up to
a maximum of 247 slave along the same lines. Each device is assigned an address that distinguishes it from all other connected
devices.
The MODBUS device lets you choose which serial port use for connection. The features s of data transmission (number of
device, baud rate, parity, stop bits) and the transmission mode must be selected on each station and cannot be changed during
the operation.
With using a serial line, there are two modes of transmission used in the Modbus Protocol. Both ways allow the same
communication skills. The mode is selected by the master and must be unique for all devices connected to the network. The
modes are:

ASCII (American Standard Code for Information Interchange)
RTU, (Remote Terminal Unit.)

This manual is divided into two parts:
Part I - Operation as master
Part II - Operation as slave.

1.1 Conventions

The modbus communication protocol standard defines 4 types of Exchange data:

INPUT STATUS = Digital Inputs
COIL STATUS = UDigital Outputs
INPUT REGISTER = Analog Inputs
HOLDING REGISTER. = Analog Outputs

Throughout the manual you have to take into account existing conventions.

1.2 Device declaration in the configuration unit

Declaration of the used device (internal device): device name assigned, MODBUS, slot location and number of the device.

INTDEVICE
...
<device_name> MODBUS TCamp channel
...

Where:

INTDEVICE is a keyword indicating the beginning of the definition of internal devices,
<device_name> is the device name,
MODBUS is the keyword that identifies the device described in this document,
TCamp is the sampling time of the device,

channel is the definition of the type of communications channel connected (0 = Prog, 1 = User, for the other ports the ID number
depends on the hardware and firmware of the instrument used, 43 = Ethernet port to a modbus TCPIP).

To declare the hardware used in the “BUS” section of the configuration unit you will have to refer to the firmware of the
hardware itself.

Example

INTDEVICE
modbus MODBUS 0002 1

1.3 Tables "data exchange" for MODBUS

1.3.1 Data read from the device

DEVICE MODBUS

4/16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Index table
15 14 13 12 11 10 9 8 7 6 5 4 6 2 1 0 Weight of the bits(2N)

Modbus
register
0001 iword1 216

ilong1
0002 iword2 20

0003 iword3 216

ilong2
0004 iword4 20

0005 iword5 216

ilong3
0006 iword6 20

0007 iword7 216

ilong4
0008 iword8 20

0009 iword9 216

ilong5
0010 iword10 20

0011 iword11 216

ilong6
0012 iword12 20

0013 iword13 216

ilong7
0014 iword14 20

0015 iword15 216

ilong8
0016 iword16 20

0017 iword17 216

ilong9
0018 iword18 20

0019 iword19 216

ilong10
0020 iword20 20

0021 iword21 216

ilong11
0022 iword22 20

0023 iword23 216

ilong12
0024 iword24 20

0025 iword25 216

ilong13
0026 iword26 20

0027 iword27 216

ilong14
0028 iword28 20

0029 iword29 216

ilong15
0030 iword30 20

0031 iword31 216

ilong16
0032 iword32 20

NOTE 1: the “ iword1 ” is the most significant word of the “ ilong1 ” (long = double word), the “iword3” is the most significant
word of the “ ilong2 ”, …
NOTE 2: the “ st_ibit0 ” parameter less significant bit (with weight 0) of the “ iword1 ”, while the “ st_ibit15 ” bit is the most
significant (with weight 15) of the “ iword1 ”.

1.3.2 Writable data from QCL and sharable in MODBUS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Index table
15 14 13 12 11 10 9 8 7 6 5 4 6 2 1 0 Weight of the bits(2N)

Modbus
register
0001 oword1 216

olong1
0002 oword2 20

0003 oword3 216

olong2
0004 oword4 20

0005 oword5 216

olong3
0006 oword6 20

0007 oword7 216

olong4
0008 oword8 20

0009 oword9 216

olong5
0010 oword10 20

0011 oword11 216

olong6
0012 oword12 20

0013 oword13 216

olong7
0014 oword14 20

0015 oword15 216

olong8

DEVICE MODBUS

5/16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Index table
15 14 13 12 11 10 9 8 7 6 5 4 6 2 1 0 Weight of the bits(2N)

0016 oword16 20

0017 oword17 216

olong9
0018 oword18 20

0019 oword19 216

olong10
0020 oword20 20

0021 oword21 216

olong11
0022 oword22 20

0023 oword23 216

olong12
0024 oword24 20

0025 oword25 216

olong13
0026 oword26 20

0027 oword27 216

olong14
0028 oword28 20

0029 oword29 216

olong15
0030 oword30 20

0031 oword31 216

olong16
0032 oword32 20

NOTE 1: the “ oword1 ” is the most significant word of the “ olong1 ” (long = double word), the “oword3” is the most significant
word of the “ olong2 ”, …
NOTE 2: the “ st_obit0 ” parameter is the less significant bit (with weight 0) of the “ oword1 ”, while the “ st_obit15 ” bit is the
most significant (with weight 15) of the “ oword1 ”.

1.4 Master operation description

The MODBUS device can use a serial port or TCPIP to communicate in master mode (parameter mode = 0). Allows (via
parameters, states and commands) all instruments to be able to communicate with any equipment utilizing Modbus.
The device provides a data exchange area where the QCL can write or read values shared with the slaves on the network. This
area is represented by a list of parameters of the device divided into two groups to differentiate the type of access of the data
by the device. The first section is identified as INPUT the second as OUTPUT. The INPUT section, for master operation, is the
storage area of reads data. It is used by all reader functions (parameter type = 1, 2, 3 o 4). The OUTPUT section, in the master
operation, is the area of data storage that the master should transfer to the slaves. It is used by all writing functions (parameter
type = 5, 6, 15 o 16). To facilitate the exchange of data between devices, the structure of the Exchange area includes data
types commonly used in QCL namely WORD, LONG and FLAG. The “BYTE” type does not appear because the modbus usually
uses the word size for each address registers. The modbus protocol selects data based on the number of access log register,
while the QCL selects based on the parameter symbol, you create a reference table in which each QCL symbol find the
corresponding number in the register of access in Modbus protocol. To obtain greater flexibility for addressing, the same area
of Exchange data can be manipulated by the QCL with different dimension parameterized. All the symbols that appear in the
same row of the table refer to the same memory locations.

1.4.1 Input and coil Data Access

The data input or coil type have in the modbus Protocol a bit size. To store this information in the table of data exchange is
defined as follows mode: each register (and then every word parameter of the device) represents 16 elements that are
numbered from left to right. For the Scriptures or multiple readings when bits read are higher than those contained in the
register the operation continues in the next register.
The st_ibit0… and st_obit1… states are useful in order to facilitate access to information bit, only in the first table log.

1.4.2 Mode of MASTER operation

The master mode is set with the mode parameter = 0. The card generates modbus messages only on QCL ordering and does
not automatically. To “format” the modbus message string there are a number of parameters.
Using the two commands SEND or SENDSYC you send the read or write request to the slave, a number of States allow an audit
on the operation being executed. We see in detail:

1.4.2.1 Parameters for formatting the message:

type = request type that you want to process (reading or writing word or bit).
idcard = address of the slave drive to which you want to send the request.
addr = the index from which to start reading or at which to start writing in the slave.
tabreg = for read operations (type = 1, 2, 3, 4), This parameter indicates the position in the “table of data read” where will

DEVICE MODBUS

6/16

store the read data on the slave. For write operations (type = 5, 6, 15, 16), this parameter indicates the position in the “table of
data to be written” where is the data to be written on the slave. Are accepted values are between 1 and 512 for values of type
parameter = 1, 2, 5, 15 (writing and reading of bits), while for type value = 3, 4, 6, 16 (writing and reading of word) the
expected values are between 1 and 32.
num = number of values that are read or write (if the request type so provides). Are accepted values are between 1 and 128
for values of type parameter = 1, 2, (reading of bits), while for type value = 3, 4, 16 (multiple word reading and writing) the
accepted value are between 1 and 32.

1.4.2.2 Commands to send the message:

SEND sends the request message to the slave.
SENDSYC sends the request message to a QEM slave of MODBUS type and reports the operation concluded (st_sended) only
when the slave executes the RECEIVED command.

1.4.2.3 State variables for diagnostic operation:

When ended the message send operation, the status st_sended variable is set to 1. If you used the SEND command the state is
set to 1 when the master receive the confirmation of the message being sent. If you have used the SENDSYC command in the
master then this status will be set to 1 when the slave QEM will execute the RECEIVED command. In case of error, This status is
still in set to 1 (After the toutsyc time) but the err parameter indicates the cause of the error (see the description of this
parameter for details).
The SENDSYC coomand it becomes necessary when you want to synchronize master data packet writing by reading the same
data from the slave (can be used when both master and slave are Qmove).

1.4.3 Read request

Read Coil

Bit read function. You want to read the bits of a slave (idcard). Sets the parameter type = 1.
You must set addr to indicate the address of the bit in the slave from which to start reading. The num parameter indicates the
number of bits that are read. You must to set tabreg to indicate the index of the bit in the “data read table” the master from
which you want to be written the read bits. The raedings value will be saved in the “data read table”. It is recommended to
always meet the following two conditions:
(addr + num - 1) ⇐ 512 e (tabreg + num - 1) ⇐ 512 otherwise the request will fail (reporting by wcmd).

Read Input

Bit read function. To read the bits of a slave (idcard). The function is equal to the “Read Coil”. Sets the parameter type = 2.
The meaning of the two functions is distinguished at the level of MODBUS protocol. Some slave can make available different
memory areas depending if the bits are Coil or Input. In the case of slave Qmove the two requests have the same effect.

Read Holding Register

Word read function. For reading the word of the slave (idcard). Sets the parameter type = 3.
You must to set addr to indicate the address of the word in the slave from which to start reading. The num parameter indicates
the number of word to be read. You must set tabreg to indicate the index of the word in the “read data table” of the master
from which you want are writes the read words. The read values will be saved in the “read data table”. It is recommended to
always meet the following two conditions:
(addr + num - 1) ⇐ 32 e (tabreg + num - 1) ⇐ 32 otherwise the request will fail (reporting by wcmd).

Read Input Register

Word read function. For reading the bit of the slave (idcard). The function is equal to the “Read Holding Register”. sets the
parameter type = 4.
The meaning of the two functions is distinguished at the level of MODBUS protocol. Some slave can make available different
memory areas depending if the read word are Holding or Input. In the case of slave Qmove the two requests have the same
effect.

1.4.4 Write request

DEVICE MODBUS

7/16

Force coil

Bit write function. For writing (force) the bit of the slave (idcard). Sets the parameter type = 5.
You must set addr to indicate the address of the bit in the slave that you want to write. You must set tabreg to indicate the
index of the bit in the “write data table” that contains the value to be written.

Force register

Word write function. For write (force) the word of a slave (idcard). Sets the parameter type = 6.
You must set addr to indicate the address of the word in the slave that you intend to write. You must set tabreg to indicate the
index of the word in the “data write table” that contains the value to be written.

Force multiple coil

Multiples bit write function. For write (force) the bit of a slave (idcard). Sets the parameter type = 15.
You must set addr to indicate the address of the bit in the slave that you intend to write. You must set in num the number of
bits to write. You must set tabreg to indicate the bit index of the “data write table” from which to begin the values to be
written. It is recommended to always meet the following two conditions:
(addr + num - 1) ⇐ 512 e (tabreg + num - 1) ⇐ 512 otherwise the request will fail (reporting by wcmd).

Force multiple register

Multiples word write function. For write (forzare) the word of a slave (idcard). Sets the parameter type = 16.
You must set addr to indicate the address of the word in the slave that you intend to write. You must set in num the number of
word to write. You must set tabreg to indicate the index of the word in the “dat write table” from which to begin the values to
be written. It is recommended to always meet the following two conditions:
(addr + num - 1) ⇐ 32 e (tabreg + num - 1) ⇐ 32 otherwise the request will fail (reporting by wcmd).

1.4.5 Examples

1) Modbus settings and opening of serial communication

modbus.mode = 0 ; modbus master
modbus.prot = 1 ; RTU
modbus.brate = 57600 ; baudrate
modbus.stopb = 1 ; stop bits
modbus.par = 0 ; parity
modbus.tout = 100 ; timeout

modbus.OPENCOM
tm_opencom = 200 ; timeout for OPENCOM command
WAIT modbus.st_opencom OR tm_opencom
IF NOT modbus.st_opencom
 OpenComError = 1 ; com not opened
ENDIF

2) Impostazioni modbus e apertura del canale di comunicazione di tipo TCPIP

modbus.mode = 0 ; modbus master
modbus.prot = 2 ; TCPIP
modbus.tout = 100 ; timeout

tcpip_port= 502 ; number of tcpip port (default 502)
modbus.stopb = (tcpip_port ANDB &H0000FF00) / 256
modbus.par = tcpip_port ANDB &H000000FF

modbus.OPENCOM
tm_opencom = 500 ; waiting time to have a correct response
WAIT tm_opencom
IF NOT modbus.st_opencom
 OpenComError = 1 ; com not opened
ENDIF

3) Reading the registry input nr.7 of the slave id 67

modbus.idcard = 67
modbus.addr = 7
modbus.tabreg = 7
modbus.num = 1
modbus.type = 4
modbus.SEND
WAIT modbus.st_sended
IF (modbus.err)
 CALL ErrorModbus
ENDIF
slSpeed = modbus.iword7

4) Reading of the holding register from nr.600 to nr.606 of the slave id 8
The area of QCL data exchange does not support the address 600, you use the tabreg parameter to save the data read at 10
address

DEVICE MODBUS

8/16

modbus.idcard = 8
modbus.addr = 600
modbus.num = 6
modbus.tabreg = 10
modbus.type = 3
modbus.SEND
WAIT modbus.st_sended
IF (modbus.err)
 CALL ErrorModbus
ENDIF

swTemp1 = modbus.iword10
slSpeed = modbus.ilong6
slPosiz = modbus.ilong7
swTemp1 = modbus.iword15

1.4.6 Block diagrams

1.4.7 Broadcast

The Broadcast is a special message that is sent by the Master and is received simultaneously from all connected slaves. The
broadcast function (idcard = 0) is supported only in master mode and if you use a message with type = 5, 6, 15 and 16 (write
only). In this mode the st_sended state is activated once ended the transmission and not on receipt of confirmation by the
slave. There isn't answer on the slaves to such messages. You cannot use the SENDSYC command.

1.4.8 Slaves indentification

When the card works in master mode allows, with specila command, tell if the slave connected is a QEM. If so also determines
the pattern of slave connected. This allows a diagnostic on the correct network configuration. You cannot extend this control to
all types of existing slaves because the protocol does not provide a standard way of slave recognition.
The READSTYPE command executed after selecting the slave (through idcard parameter) send a nr.17 modbus request to the
slave for recognition. The slave will responds with a default value and can be read in the stype parameter of the master. If the
slave is not produced by QEM, the parameter will be –1 value to indicate that the slave is connected but you cannot identify it.
For the MODBUS device the ID slave is different depending on the slave QEM used. For encoding of the slaves see the slave
Firmware used.

Example of slave identification nr.12:

modbus:idcard = 12
modbus.READSTYPE
WAIT modbus.st_sended
IF (modbus.err)
 sbConfig = 3 ; error: slave 12 not connected
ELSE
 IF (modbus.stype EQ 1) ; Board CAM-AG-98
 sbConfig = 1 ; configuration OK
 ELSE
 sbConfig = 2 ; error in network configuration
 ENDIF
ENDIF

1.4.9 Protocol extension

The modbus standard communication protocol defines 4 types of Exchange data:

INPUT STATUS,
COIL STATUS,

DEVICE MODBUS

9/16

INPUT REGISTER,
HOLDING REGISTER.

These 4 types treat signals as Digital Inputs, Digital Outputs, Analog Inputs, and Analog Outputs. The values of the registers
(INPUT REGISTERS and HOLDING REGISTERS), are defined as values in 16 bit, each with a unique address, (example INPUT
REGISTER #1, INPUT REGISTER #2, INPUT REGISTER #3, ecc.).
To allow support for datatypes larger than 16 bit, has been designed an extension to the protocol to treat long 32 bit dimension
values. Implementing this feature preserves the formatting of the message standard modbus it uses the contents of two
consecutive addresses to represent a 32 bit value. When this extension is enabled (wider = 1), depending on the address used
the slave responds with a 16-bit or 32-bit value for each log request. If the address is greater than 5000 will be returned a 32-
bit value, if under the Protocol remains unchanged with response to 16 bits.

1.4.10 Commands and parameters

1.4.10.1 Used symbols

The parameter name, condition or command is taken back to the left side of the table.

R
Indicates if the parameter or state is retentive (upon initialization of the device maintains the previously defined state), or the
state assumes upon initialization of the device.
If the device does not need to initialize the “R” field indicates the value that the parameter or state take at the at power-up
card.
R = Retentive
0 = Upon initialization of the device the value is forced to zero.
1 = Upon initialization of the device the value is forced to one.
- = Upon initialization of the device is presented significant value.

D
Indicates the size of the parameter.
F = Flag
B = Byte
W = Word
L = Long
S = Single Float

Conditions

Describes all the conditions necessary for the parameter so that the parameter is considered correct or because the command
is accepted.
In some cases, limit values are specified for the acceptance of the parameter: if any values outside the limits set are
introduced, the data is however accepted; therefore appropriate controls of the application must be provided to ensure the
proper functioning.
To execute a command, all conditions must be met; otherwise the command does not execute.

A
Indicates the access mode.
R = Read.
W = Write.
RW = Read / Write.

1.4.10.2 Parameters

Name D R A Conditions Description

mode B R R/W -
Mode
(0 ÷ 2)
Defines if the board should function as a master or slave.
0 = master.

prot B R R/W -

Protocol
(0 ÷ 1)
Defines the type of modbus protocol to use.
0 = ASCII,
1 = RTU,
2 = TCPIP

DEVICE MODBUS

10/16

Name D R A Conditions Description

wider B R R/W -

Wide Registers
(0 ÷ 1)
Indicates if to use the 32-bit registers protocol extension. See the “Extension of the Protocol”
section :
0 = normal,
1 = extended protocol.

idcard W R R/W -
Identification Card
(0 ÷ 255)
In the operation as the master is the device number that you want to transmit. In master mode
setting of zero is also valid for operation broadcast.

type B 1 R/W -
Type
Defines the type of request that the master must perform.
Allowed values: 1, 2, 3, 4, 5, 6, 15, 16

addr L 1 R/W -
Address
(1 ÷ 65535)
Defines the address used by the master to define the data to be read or write.

tabreg W 1 R/W -
Destination
(1 ÷ 512)
Defines the address data tables into which to write the data read or where to find the data to write.

num W 1 R/W -
Number
(1 ÷ 512)
Is the number of items to be written to or read in the request of the master.

brate L R R/W -
Baud rate
Serial Baud rate.
Allowed values: 4800, 9600, 19200, 38400, 57600, 115200.

stopb B R R/W - Stop bit
Allowed values: 1, 2.

par B R R/W -

Parity
(0 ÷ 2)
0 = none,
1 = odd,
2 = even.

tout W R R/W -
Timeout
(0 ÷ 9999 msec)
For the master mode is the maximum time the slave must respond.
Setting it to zero, the Timeout is disabled.

toutsyc W R R/W -
Time out synchronize
(0 ÷ 9999 msec)
Only used to master mode is the maximum time that can elapse between sending the SENDSYC
command and the RECEIVED command execution on the QEM slave.

iword1÷32 W 0 R - Input Word nr. (1Input Long nr. (1÷16)32)
st_ibit0÷15 F 0 R - Input bit in the iword1 parameter
ilong1÷16 L 0 R - Input Long nr. (1÷16)
oword1÷32 W 0 R/W - Output Word nr. (1÷32)
st_obit0÷15 F 0 R/W - Output bit in the oword1 parameter
olong1÷16 L 0 R/W - Output Long nr. (1÷16)

The ability to communicate with the TCPIP protocol It was developed at a later time than the birth of the MODBUS device. For
this reason the IP address and port setting is achieved using some parameters that have a different meaning.

To configure the TCPIP port number You must go and write about the stopb and par parameters. Respectively :

stopb = tcpip_port / &H00000100
par = tcpip_port ANDB &H000000FF

To set the TCPIP slave to which you want to execute the request you must go to write on thebrate parameter .
An IP address can be expressed as TcpAddr3.TcpAddr2.TcpAddr1.TcpAddr0 (for example 192.168.0.1).

brate = (TcpAddr3 * &H01000000) + (TcpAddr2 * &H00010000) + (TcpAddr1 * &H00000100) + TcpAddr0

1.4.10.3 Variables

DEVICE MODBUS

11/16

Name D R A Conditions Description

err B 0 R -

Errors
Indicates if errors occurred in the protocol.
In master mode the parameter is updated to coincide the activation of the st_sended state. The values
from 1 to 49 are those sent by the slave. Values greater than 50 are generated internally by the master.
The first 8 velues are normalized in the protocol and are:
0 = communications without errors,
1 = ILLEGAL FUNCTION,
2 = ILLEGAL DATA ADDRESS,
3 = ILLEGAL DATA VALUE,
4 = SLAVE DEVICE FAILURE,
5 = ACKNOWLEDGE,
6 = SLAVE DEVICE BUSY,
7 = NEGATIVE ACKNOWLEDGE,
8 = MEMORY PARITY ERROR,
50 = UNKNOWN RECEIVED ERROR the slave answered with a code greater than 49,
51 = TIMEOUT the slave does not respond within the time scheduled in the tout parameter,
52 = INVALID ANSWER,
52 = INVALID FUNCTION ANSWER - Function type not supported,
53 = CHECKSUM ANSWER - The checksum proceeds does not match,
54 = TRUNCATED ANSWER - Message too short,
55 = INVALID ID ANSWER - Slave ID mismatch,
56 = INVALID_MBAP_TRANSACTION_ID - modbus TCPIP, transaction ID incorrectly,
57 = INVALID_MBAP_PROTOCOL_ID - modbus TCPIP, protocol ID different by zero,
70 = TIMEOUT SYNCHRONIZED the slave QEM did not execute the RECEIVED command within the time
scheduled in the toutsyc parameter.
In slave mode the parameter is never updated.

serr B 0 R/W -

Serial Errors
Indicates if errors occurred in serial communication. The parameter is updated for each error
encountered. The value persists until:
- under a subsequent error;
- the writing of one of the following parameters: mode, prot, wider, brate, stopb, par;
- writing about himself (any value will reset).
0 = no errors,
1 = parity error,
2 = framing error,
3 = overrun error.

stype W 0 R -
Slave type
Indicates the type of slave connected. The parameter is updated when the st_sended parameter becomes
1 and if it had been execute a READSTYPE command

1.4.10.4 States

Name D R A Conditions Description

st_sended F 0 R -
Sended
State only been used in master mode. Activation indicates completion of the transmission of a
message. The state is reset with the SEND or SENDSYC commands.

st_opencom F 0 R -
Open communication port
Activation indicates that the device is working the serial communications port. To set this state use the
OPENCOM command, to reset CLOSECOM.

wdata F 0 R - Warning Data
This bit indicates that an attempt was made to insert an invalid value in a parameter.

wcmd F 0 R - Warning Command
This bit indicates that it did not execute a command because they missing the necessary conditions.

1.4.10.5 Commands

The available commands to manage the device are listed below in descending order of priority.
The device executes all commands received within the same sampling time starting from the one with the highest priority.
For example if the device receives the same sampling time CLOSECOM and OPENCOM commands, first run the OPENCOM
command and then to CLOSECOM leaving therefore the communication port closed.

Name D R A Conditions Description

SEND - - -
mode = 0
0 < num ⇐ 128
st_sended = 1
st_opencom = 1

Sended
Determines the message transmission toward the slave select.

SENDSYC - - -
mode = 0
0 < num ⇐ 128
st_sended = 1
st_opencom = 1

Send synchronize
Usable only in master mode determines the message transmission towards a slave QEM with
synchronisation.

READSTYPE - - -
mode = 0
st_sended = 1
st_opencom = 1

Read slave type
Read information request type specified on the idcard slave. The answer will be reported on the
stype parameter when the st_sended state becomes 1.

DEVICE MODBUS

12/16

Name D R A Conditions Description

CLRWDATA - - - - Clear Warning Data
Reset the wdata parameter reporting.

CLRWCMD - - - - Clear Warning Command
Reset the wcmd parameter reporting.

OPENCOM - - - st_opencom = 0 Open Serial communication\ Open the serial communication (the device then committed the
communications port). The st_opencom status becomes 1.

CLOSECOM - - - -
Close Serial communication
Close the serial communication (the device then does not committted the communications port).
The st_opencom status becomes 0.

1.5 Slave operation description

1.5.1 Slave mode operation

Slave mode is set with the mode = 1 or mode = 2 parameter. You must to introduce in the parameters the slave ID code
through the idcard parameter.

Modbus settings and opening channel of serial communication

modbus.mode = 1 ; modbus slave
modbus.prot = 1 ; RTU
modbus.brate = 57600 ; baudrate
modbus.stopb = 1 ; stop bits
modbus.par = 0 ; parity
modbus.idcard = 1 ; slave id

modbus.OPENCOM
tm_opencom = 100 ; timeout for OPENCOM command
WAIT modbus.st_opencom OR tm_opencom
IF NOT modbus.st_opencom
 OpenComError = 1 ; com not opened
ENDIF

Modbus settings and open of the communication channel of TCPIP type

modbus.mode = 1 ; modbus slave
modbus.prot = 2 ; TCPIP

tcpip_port= 502 ; number of tcpip port (default 502)
modbus.stopb = (tcpip_port ANDB &H0000FF00) / 256
modbus.par = tcpip_port ANDB &H000000FF

modbus.OPENCOM
tm_opencom = 100 ; waiting time to have a correct response
WAIT (modbus.st_opencom OR timerOpencom)
IF NOT modbus.st_opencom
 OpenComError = 1 ; com not opened
ENDIF

The operations that should execute the QCL are essentially two:

update the parameters owordNN, olongNN type (which will then be read from the master)
process the parameters iwordNN, ilongNN type (which will then written by the master)

1.5.1.1 Updating owordNN parameters type

To update the owordNN parameters type the QCL must write values in the parameters then send the VALIDATE command. The
use of the command is necessary to make available on the readings of the master the new data at the same time, so that they
can be read only part of updated parameters. So assigning a value to a device parameter DOES NOT MEAN that it is
immediately available for the master readings. Will only be available after the VALIDATE command.

Example

modbus.olong1 = anpos.speed
modbus.oword1 = npezzi
modbus.oword2 = npezzitot
modbus.oword3 = anpos.dir
modbus.olong2 = anpos.posit
modbus.VALIDATE

1.5.1.2 Process iwordNN parameters type

To process the iwordNN parameters type, instead,the QCL must wait for the st_msgrx state is activated. This means that a
write message was sent by the master. For the read message no signal reportedly to QCL parameters. The QCL then must take
the values from the data exchange and at the end needs to send the RECEIVED command, only then the st_msgrx state is
disabled.

Example

WAIT modbus.st_msgrx

DEVICE MODBUS

13/16

anpos.speed = modbus.ilong1
anpos:posit = modbus.ilong2
npezzi = modbus.iword1
RECEIVED modbus

There is no control to prevent when reading iwordNN parameters the master incorrectly execute another writing, before the
project code present in the slave to finish the process.
Also the code for handling the modbus device in the application it is recommended that it is collected in a single task in order
not to create simultaneous accesses to the device that could generate invalid conditions.

All read requests that arrive from the master MODBUS refer to the owordNN type data by accessing to the same data area. The
slave provides the values that the master will read in the owordNN parameters type.
All write requests arriving from the MODBUS master refer to the iwordNN type data aby accessing to the same data area. The
slave provides the iwordNN parameters where the master will write data.

1.5.2 Block diagram

1.5.3 Commands and parameters

1.5.3.1 Used symbols

The parameter name, condition or command is shown at the left of the table.

R
Indicates if the parameter or state is retentive (upon initialization of the device maintains the previously defined state), or the
state assumes upon initialization of the device.
If the device does not need to initialize the “R” field indicates the value that the parameter or accept to the power up of the
card.
R = Retentive
0 = Upon initialization of the device the value is forced to zero.
1 = Upon initialization of the device the value is forced to one.
- = Upon initialization of the device is presented significant value.

D
Indicates the size of the parameter.
F = Flag
B = Byte
W = Word
L = Long
S = Single Float

Conditions

Describes all the conditions necessary so that the parameter is considered correct or because the command is accepted.
In some cases, limit values are specified for the acceptance of the parameter: if there are any values outside the limits set, the
data is however accepted; therefore appropriate controls of the application must be provided to ensure the proper functioning.

DEVICE MODBUS

14/16

To execute a command, all conditions must be met; otherwise the command is not executed.

A
Indicates the access mode.
R = Read.
W = Write.
RW = Read / Write.

1.5.3.2 Parameters

Name D R A Conditions Description

mode B R R/W -

Mode
(0 ÷ 2)
Defines if the board should function as a master or slave.
1 = slave with fixed data exchange area;
2 = slave without fixed data exchange area: any writing or reading done by the master is put to 1
the st_msgrx flag.
At the same time the type, addr and num parameters indicate the features of the received
message.
- Type indicates the type of function that wants to be the master (read or write),
- addr indicates the address of the beginning of the written or read data block,
- num indicates the read or written number of data (to bit or to byte depending on the value of
type).
The device will check, in reception, only num (size of message) that does not exceed 32wordbut not
the address that can now be any.
If it is a write (You can tell by the value of the type if it is 5,6,15,16) are shows the lists the data in
variables of exchange input (always starting from the first word) and the device waits for the
RECEIVED command.
If you read the device waits for the QCL stores data in word output exchange variables and waits for
the VALIDATE command.

prot B R R/W -

Protocol
Defines the type of Modbus Protocol to use.
0 = ASCII,
1 = RTU,
2 = TCPIP.

wider B R R/W -
Wide Registers
Indicates if to use the 32-bit registers protocol extension. See “Extension of the Protocol” section.
0 = normal,
1 = extended protocol.

idcard W R R/W -
Identification Card
(1 ÷ 255 for slave)
In slave mode is the number that identifies the device on the network.

brate L R R/W -
Baud rate
Baud rate of the serial.
Valid values: 4800, 9600, 19200, 38400, 57600, 115200.

stopb B R R/W - Stop bit
Valid values: 1, 2.

par B R R/W -

Parity
(0 ÷ 2)
0 = none,
1 = even,
2 = odd.

rdelay W R R/W -
Reply delay
(0 ÷ 9999 msec)
It is the time to wait before transmitting the reply.

iword1÷32 W 0 R - Input Word nr. (1Input Long nr. (1÷16)32)
st_ibit0÷15 F 0 R - Input bit in the iword1 parameter
ilong1÷16 L 0 R - Input Long nr. (1÷16)
oword1÷32 W 0 R/W - Output Word nr. (1÷32)
st_obit0÷15 F 0 R/W - Output bit in the oword1 parameter
olong1÷16 L 0 R/W - Output Long nr. (1÷16)

1.5.3.3 Variables

Name D R A Conditions Description

serr B 0 R/W -

Serial Errors
Indicates if errors occurred in serial communication.
The parameter is updated for each error encountered. The value persists until a subsequent error or to a
writing on the same with the QCL.
0 = no errors,
1 = parity error,
2 = framing error,
3 = overrun error.

DEVICE MODBUS

15/16

1.5.3.4 States

Name D R A Conditions Description

st_msgrx F 0 R -
Message received
State used only in slave mode. Indicates that a message from the master has executed a write in the
QCL data exchange area. The state is reset with the RECEIVED command.

st_opencom F 0 R -
Open communication port
Activation indicates that the device is working with the serial communications port. To set this state
use the OPENCOM command, for reset use CLOSECOM.

wdata F 0 R - Warning Data
This bit indicates that an attempt was made to insert an invalid value in a parameter.

wcmd F 0 R - Warning Command
This bit indicates that it did not execute a command because they lack the necessary conditions.

1.5.3.5 Commands

The available commands to manage the device are listed below in descending order of priority.
The device executes all commands received within the same sampling time starting from the one with the highest priority.
For example if the device receives the same sampling time CLOSECOM and OPENCOM commands, first run the OPENCOM
command and than to CLOSECOM leaving therefore the communication port closed.

Name D R A Conditions Description

RECEIVED - - -
st_msgrx = 1
mode = 1, 2
st_opencom = 1

Received
Used only in slave mode. Indicates that the QCL application has processed the information that the
master has sent

VALIDATE - - - mode = 1, 2
st_opencom = 1

Validate
Indicates that the parameters of the QCL data exchange becomes available to the master.

CLRWDATA - - - - Clear Warning Data
Reset the wdata parameter reporting

CLRWCMD - - - - Clear Warning Command
Reset the wcmd parameter reporting

OPENCOM - - - st_opencom = 0
Open Serial communication
Open the serial communication (the device then committed the communications port). The
st_opencom state changes to 1.

CLOSECOM - - - -
Close Serial communication
Closes the serial communication (the device then does not commit more the communications port).
The st_opencom state changes to 0.

1.6 Migration from MODBUS01 device to MODBUS device

The first thing to note for migration is the fact that the MODBUS01 device is external, while the MODBUS is internal. This
implies that the device declaration must be done in “INTDEVICE” section in the configuration unit of the project. In addition, this
entails choosing, when defining the MODBUS device, of the sampling time. The value of the sample time that keeps the
performance of communication between the two devices is 5 ms. Being defined, you must select the serial port to be
committed.
The MODBUS device increased the number of exchange variables (from 16 word to 32 word) but this does not affect the
operation for settings that use the maximum 16 word How are those designed for the MODBUS01 device.
The MODBUS device has restricted the “num” variable to 128, while the MODBUS01 device the limit is 256. This was necessary
to allow an optimization of sampling time. The decision was taken in view of the fact that those values were used only for Coils
managing, but that was logic leaking more than read/write 128 consecutive coils.
The MODBUS device allows you to control (using 2 new commands) communication serial's commitment on the part of the
device. This new functionality is interesting in the event that other devices have been declared in a project Qview that can use
the same serial.
If an application was written for the MODBUS01 device you must add the OPENCOM command (executed only once) as shown
in the following example.

Example:

; setting communication parameters
modbus.mode = 0
modbus.brate = 38400
...
modbus.OPENCOM
WAIT modbus.st_opencom

modbus.idcard = 8
modbus.addr = 600
modbus.num = 6
modbus.tabreg = 10
modbus.type = 3
modbus.SEND
WAIT modbus.st_sended
IF (modbus.err)
 CALL ErrorModbus
ENDIF

DEVICE MODBUS

16/16

Documento generato automaticamente da Qem Wiki - https://wiki.qem.it/
Il contenuto wiki è costantemente aggiornato dal team di sviluppo, è quindi possibile che la versione online contenga
informazioni più recenti di questo documento.

https://wiki.qem.it/

	Sommario
	DEVICE MODBUS
	1. Introduction
	1.1 Conventions
	1.2 Device declaration in the configuration unit
	1.3 Tables "data exchange" for MODBUS
	1.3.1 Data read from the device
	1.3.2 Writable data from QCL and sharable in MODBUS

	1.4 Master operation description
	1.4.1 Input and coil Data Access
	1.4.2 Mode of MASTER operation
	1.4.2.1 Parameters for formatting the message:
	1.4.2.2 Commands to send the message:
	1.4.2.3 State variables for diagnostic operation:

	1.4.3 Read request
	Read Coil
	Read Input
	Read Holding Register
	Read Input Register

	1.4.4 Write request
	Force coil
	Force register
	Force multiple coil
	Force multiple register

	1.4.5 Examples
	1.4.6 Block diagrams
	1.4.7 Broadcast
	1.4.8 Slaves indentification
	1.4.9 Protocol extension
	1.4.10 Commands and parameters
	1.4.10.1 Used symbols
	Conditions

	1.4.10.2 Parameters
	1.4.10.3 Variables
	1.4.10.4 States
	1.4.10.5 Commands

	1.5 Slave operation description
	1.5.1 Slave mode operation
	1.5.1.1 Updating owordNN parameters type
	1.5.1.2 Process iwordNN parameters type

	1.5.2 Block diagram
	1.5.3 Commands and parameters
	1.5.3.1 Used symbols
	Conditions

	1.5.3.2 Parameters
	1.5.3.3 Variables
	1.5.3.4 States
	1.5.3.5 Commands

	1.6 Migration from MODBUS01 device to MODBUS device
	Example:

